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Integration-by-parts (IBP) reduction is a crucial step for the loop amplitude computation.

Recalled that we defined that

G[n1, . . . , nk] =

∫
dDl1

iπD/2
. . .

dDlL
iπD/2

1

Dn1
1 . . . Dnk

k

(1)

For arbitrary ni ∈ Z’s, i = 1, . . . k, we call the set of all such G[n1, . . . , nk] an integral family.

Suppose the we have used an integrand reduction process, like the OPP-reduction or Passarino-

Veltman reduction, to reduce the tensor production to a Feynman integral with external momenta

only (without polarization vectors or the auxiliary ω vector). Thus the integral only contains

external momenta. Furthermore, define E as the linearly independent vectors. To make the IBP

reduction work we have to add some irreducible scalar products (ISPs), to set

k = LE +
L(L+ 1)

2
. (2)

To goal of IBP reduction is to linearly reduce integrals in a family to a finite number of “simple

integrals”. Note the for the one-loop case, after the OPP reduction, all ni’s are either 0 or 1, so

there is no much IBP work to do. However, for the two-loop case, even with the OPP plus the

Groebner basis reduction, the output contains a large number of integrals and should be reduced

by IBPs.

Later we will see that for differential equations of Feynman integrals, there would be a lot of

Feynman integrals with ni > 1. Usually these integrals should be reduced by IBPs also.

In practice, usually the IBP reduction is most time and RAM consuming part for an amplitude

computation.

I. FUNDAMENTAL IBPS

For an integral family, the fundamental IBPs are

0 =

∫
dDl1

iπD/2
. . .

dDlL
iπD/2

∂

∂lµi

vµ

Dn1
1 . . . Dnk

k

(3)

Here i = 1, . . . L and the vector v’s can be chosen in {p1, . . . pE , l1 . . . lL}. Hence there are L(L+E)

fundamental IBPs. Note that for one fundamental IBP actually contains infinite numbers of IBP

relations, since ni’s are arbitrary integers.

The derivatives in (3) should be rewritten as a linear of Di’s. This involves some simple com-

putations.
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II. SECTORS

As a linear system, the IBPs have the structure of a big upper block-triangular matrix. To see

this, we introduce the concept of sectors of integrals.

For an integral G[n1, . . . nk], we define its sector as (s1, . . . sk). Here

si =

 1 ni > 0

0 ni ≤ 0
(4)

The concept of sector is equivalent to the topology of Feynman diagrams.

If for two distinct sectors S(1) = (s
(1)
1 , . . . , s

(1)
k ) and S(2) = (s

(2)
1 , . . . , s

(2)
k ),

s
(1)
i > s

(2)
i , 1 ≤ i ≤ n (5)

The we call S(1) a super-sector of S(2), and S(2) a sub-sector of S(1).

Usually we think that integrals in the super sectors are more “complicated”. Hence if S(2) a

sub-sector of S(1), we define

I1 � I2, ∀I1 ∈ S(1), I2 ∈ S(2) (6)

However, the super-sub-sector ordering for the sectors is not a total ordering. We need to by hand

extend it to a total ordering of all the sectors.

For two integrals in the same sector, we also define a ordering to formally indicate the compli-

cation. We call the unique integral I in a sector with ni’s either zero or one, the “corner integral.

Then we define the corner integral as the simplest integral in the sector. Then we give an ordering

for the other integrals, by the distance from the corner integral.

By the procedure above, we have a total ordering of all integrals in one family. The total

ordering is not unique. However, we emphasize that, traditionally there are two crucial features

which are shared in all integral total orderings:

1. The super-sub-sector relation is respected by an integral ordering.

2. The corner integral is the lowest integral for a given sector.

We have the total ordering of all integrals in a family, and the IBP relations between integrals

in a family. The linear coefficients must be rational functions of Mandelstam variables, masses and

the spacetime dimension. As usual, we list the IBP relation coefficients in a matrix, where the row

is for the relation and the column is the for the integrals sorted in the total integral ordering, from

higher to lower.

Therefore the IBP coefficient matrix is block upper-triangular.



3

III. IBP REDUCTION AND MASTER INTEGRALS

The goal of IBP reduction is to express “complicated” Feynman integrals to a linear combination

of “simple” Feynman integrals. Given enough number of IBP relations, we run the Gaussian

elimination of the IBP coefficient matrix, to get the IBP reduction result.

Since the matrix is block upper-triangular, we carry out the Gaussian elimination block by

block. Furthermore, we may also carry out the Gaussian elimination in parallel for several sectors

without the “super-sub” sector relation.

Since the coefficients contain the Mandelstam variables, masses and the spacetime dimension,

the Gaussian elimination is a very heavy computation.

If an integral cannot be expressed as a linear combinations of lower integrals, i.e., the corre-

sponding matrix column does not have a pivot after Gaussian elimination, then we can this integral

a “master integral”. Note that the master integral definition depends on the ordering choice of the

integral ordering.

Smirnov’s proved that for a given integral family the number of master integral is always a finite

number. The different integral orderings do not change this number.

Roman Lee claimed that the number of master integrals in one sector equals the number of

{critical points of F} ≡ {∂F
∂zi

= 0 and F 6= 0} (7)

where F is the Lee-Pomeransky polynomial or the Baikov polynomial on cut. However, this claim

has counter examples.

IV. ZERO SECTORS

We treat any scaleless integral in dimensional regularization as zero. This statement is to be

understood as an analytic continuation.

For instance, the massless tadpole, the no-propagator scale Feynman integral are all zero in

dimensional regularization. Furthermore, if all integrals in one sector are zero, we call this sector

“zero sector”.

From the partial fraction, we see that if the corner integral in a sector is zero, then actually all

integrals in this sector is zero and thus this sector is a zero sector.

It is important to identify zero sectors in an integral family, so that we have the IBP reduction

boundary.
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V. SYMMETRIES

Frequently, we have symmetries between different Feynman integrals. The symmetry may come

from the graph symmetry or the symmetry of symanzik polynomials.

For example, consider the two-loop massless double box diagram with the propagators,

D1 = l21, D2 = (l1 − p1)2 D3 = (l1 − p1)2 D4 = (l1 − k1 − k2)2,

D5 = (l2 + k1 + k2)
2, D6 = (l2 − k4)2, D6 = l22 , D7 = (l1 + l2)

2 (8)

as well as two ISPs

D8 = (l1 + k4)
2, D9 = (l2 + k1)

2 . (9)

This diagram has the left-right and up-down symmetries. For the left-right symmetry, naively

we see that

k1 → k4, k2 → k3, k3 → k2, k4 → k1, (10)

and

D1 → D6, D2 → D5, D3 → D4, D4 → D3, D5 → D2 D6 → D1 D7 → D7 (11)

as well as the transformation of ISPs. We see that it induces the transformation,

l1 → l2, l2 → l1 (12)

It implies that,

G[n1, n2, n3, n4, n5, n6, n7, n8, n9](p1, p2, p3, p4)

= G[n6, n5, n4, n3, n2, n1, n7, n9, n8](p4, p3, p2, p1) (13)

However, we know that the Feynman integral only depends on Lorentz invariants. It is clear that

p4 · p3 = p1 · p2 and p4 · p2 = p1 · p3. Therefore

G[n1, n2, n3, n4, n5, n6, n7, n8, n9] = G[n6, n5, n4, n3, n2, n1, n7, n9, n8] (14)

This relation provides the symmetry relation in the double box sector, like,

G[1, 1, 1, 1, 1, 1, 1, 0,−1] = G[1, 1, 1, 1, 1, 1, 1,−1, 0] . (15)
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What is less obvious is the symmetry relating different sectors. From (14), we see that

G[1, 1, 0, 1, 1, 0, 1, 0, 0] = G[0, 1, 1, 0, 1, 1, 1, 0, 0] (16)

G[1, 1, 1, 0, 1, 0, 1, 0, 0] = G[0, 1, 0, 1, 1, 1, 1, 0, 0] (17)

That means the sector (1, 1, 0, 1, 1, 0, 1, 0, 0) is equivalent to (0, 1, 1, 0, 1, 1, 1, 0, 0).

Sometime the symmetry induces complicated relations between integrals, if the symmetry group

is large. For instance, consider the 2-loop uniformly massive subset diagram with the propagators

D1 = l21 −m2, D2 = l22 −m2, D3 = (l1 + l2 + p)2 −m2, (18)

as well as the IPS,

D4 = (l1 + p)2, D5 = (l2 + p)2, (19)

with p2 = s. Consider the symmetry,

l1 → −l1 − l2 − p, l2 → l2 (20)

This transformation does not change the integral measure. Under this symmetry,

D1 → D3, D2 → D2, D3 → D1

D4 → (l1 + l2)
2 = D1 +D2 +D3 −D4 −D5 + 3m2 + s, D5 → D5 (21)

Therefore we have complicated symmetry relations like

G[1, 1, 1,−1, 0] = G[0, 1, 1, 0, 0] +G[1, 0, 1, 0, 0] +G[1, 1, 0, 0, 0]

−G[1, 1, 1,−1, 0]−G[1, 1, 1, 0,−1] + (3m2 − s)G[1, 1, 1, 0, 0] (22)

In practice, we can use polynomial mapping algorithms to identity equivalent Symanzik poly-

nomial, in order to find symmetries.
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